Today I tried to find out how Gematria and Notarikon calculate their numbers, and it’s a little different from what you posted.
Notarikon e.g. takes the Ascii number of the first and the last letter.
Then it adds them and uses the first decimal numeral of the sum as the skills result.
List from findings with Notarikon
e.g. Leaf Bug = Moss3 (true name)
M= (Dec) 77
3= (Dec) 51
77+51= (12)8
Notarikon value =8
e.g. Kepa = Onion (true name)
O= (Dec) 79
n= (Dec) 10
79+10 = (8)9
Notarikon value =9
e.g Hanaming = Hanaming (true name)
H= (Dec) 72
g= (Dec) (1)03
72+03= (7)5
Notarikon value =5
e.g. Vubbe Miner = Goblin_miner (true name)
G= (Dec) 71
r= (Dec) (1)14
71+14= (8)5
Notarikon value =5
e.g. Raflower = whip_vine (true name)
w= (Dec) (1)19
e= (Dec) (1)01
19+01= (2)0
Notarikon value =0
e.g. Stone Orca = monster_stoneorca (true name)
m= (Dec) (1)09
a= (Dec) 97
97+09= (10)6
Notarikon value =6
e.g Shredded = monster_shredded (true name)
m= (Dec) (1)09
d= (Dec) (1)00
09+00= (0)9
Notarikon value =9
Gematria seems more complicated, however.
My current theory is that Gematria calculates the results in two different way, for monsters whose database name starts with monster_ and in another way for monsters without this.
Since Gematria can also calculate 0, we can be sure that the result cannot be a divison unless there’s some form of substraction involved.
As the formula however features only + in the calculation shown on screen, I’ve come up with the theory that monsters whose database name doesn’t start with monster_ recieve their Gematria result from adding up all first decimal place numerals.
E.g. for Leaf Bug (“Moss3”) we have (7)7+(11)1+(11)5+(11)5+(5)1.
We add up 7+1+5+5+1 and recieve (1)9. The Gematria result for this monster also is 9. I’ve checked only 6 monsters so far and it always works this way, so I can’t say if it’s true or not, but it seems to be this way(have to check with more monsters later).
This also works for your Popolion_blue, as the result would be 47, resulting in 7.
However, this doesn’t work for monsters whose database name starts with monster_.
I suspect that it’s a little more complicated calculation, basically calculating the difference between the sum of the first decimal place numericals and the sum of the second decimal place numerals.
This difference is then substracted by the number of letters in the name and the first decimal place numeral of the calculation result is used as the result of Gematria. However, this is still highly speculational as I’ve only confirmed this to work with 3 monsters, it requires a lot more testing before I can even state this as a theory xD
Gematria findings for the same monsters
Gematria
e.g. Leaf Bug = Moss3 (true name) 5
M= (Dec) 77
o= (Dec) (1)11
s= (Dec) (1)15
3= (Dec) 51
77+11+15+15+51= 165 [15/19]
165 ? (7)7+(1)1+(1)5+(1)5+(5)1 = (1)9
Gematria value =9
e.g. Kepa = Onion (true name) 5
O= (Dec) 79
n= (Dec) (1)10
i= (Dec) (1)05
o= (Dec) (1)11
79+10+05+11+10 = 115 [10/15]
115 ? (7)9+(1)0+(0)5+(1)1+(1)0 = (1)5
Gematria value =5
e.g Hanaming = Hanaming (true name) 8
H= (Dec) 72
a= (Dec) 97
n= (Dec) (1)10
m= (Dec) (1)09
i= (Dec) (1)05
g= (Dec) (1)03
72+97+10+97+09+05+10+03 = 303 [27/33]
303? (7)2+(9)7+(1)0+(9)7+(0)9+(0)5+(1)0+(0)3 = (3)3
Gematria value =3
e.g. Vubbe Miner = Goblin_miner (true name) 12
G= (Dec) 71
o= (Dec) (1)11
b= (Dec) 98
l= (Dec) (1)08
i= (Dec) (1)05
n= (Dec) (1)10
_= (Dec) 95
m= (Dec) (1)09
e= (Dec) (1)01
r= (Dec) (1)14
71+11+98+08+05+10+95+09+05+10+01+14 = 337 [29/47]
337? (7)1+(1)1+(9)8+(0)8+(0)5+(1)0+(9)5+(0)9+(0)5+(1)0+(0)1+(1)4 = (4)7
Gematria value =7
e.g. Raflower = whip_vine (true name) 9
w= (Dec) (1)19
h= (Dec) (1)04
i= (Dec) (1)05
p= (Dec) (1)12
_= (Dec) 95
v= (Dec) (1)18
n= (Dec) (1)10
e= (Dec) (1)01
19+04+05+12+95+18+05+10+01 = 169 [13/39]
169? (1)9+(0)4+(0)5+(1)2+(9)5+(1)8+(0)5+(1)0+(0)1 = (3)9
Gematria value =9
e.g. Vubbe Archer = Goblin_archer (true name) 13
G= (Dec) 71
o= (Dec) (1)11
b= (Dec) 98
l= (Dec) (1)08
i= (Dec) (1)05
n= (Dec) (1)10
_= (Dec) 95
a= (Dec) 97
c= (Dec) 99
h= (Dec) (1)04
e= (Dec) (1)01
r= (Dec) (1)14
71+11+98+08+05+10+95+97+14+99+04+01+14 = 527 [47/57]
527? (7)1+(1)1+(9)8+(0)8+(0)5+(1)0+(9)5+(9)7+(1)4+(9)9+(0)4+(0)1+(1)4 = (4)7
Gematria value =7
e.g. Stone Orca = monster_stoneorca (true name) 17 Value for monster_ = 171
m= (Dec) (1)09
o= (Dec) (1)11
n= (Dec) (1)10
s= (Dec) (1)15
t= (Dec) (1)16
e= (Dec) (1)01
r= (Dec) (1)14
_= (Dec) 95
c= (Dec) 99
a= (Dec) 97
09+11+10+15+16+01+14+95+15+16+11+10+01+11+14+99+97 = 445 [38/65]
445? 65-38-17= (1)0
Gematria value =0
e.g Shredded = monster_shredded (true name) 16
m= (Dec) (1)09
o= (Dec) (1)11
n= (Dec) (1)10
s= (Dec) (1)15
t= (Dec) (1)16
e= (Dec) (1)01
r= (Dec) (1)14
_= (Dec) 95
h= (Dec) (1)04
d= (Dec) (1)00
09+11+10+15+16+01+14+95+15+04+14+01+00+00+01+00 = 206 [16/46]
206? 46-16-16= (1)4
Gematria value =4
Sadly I couldn’t find something else about this on the net, I thought that maybe someone else found out already how Gematria/Notarikon work so I wouldn’t suffer the shame if I’m wrong on Gematria xD